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Abstract— As new versions of software are developed bugs
inevitably arise either due to regression or new functionality.
Challenges arise in discovering, managing, and testing the impact
of changes on software. These challenges are magnified in
software systems that evolve, because the new functionality
is piece-wise introduced into a live program with prior state
produced by the prior component versions. If new functionality
introduced into a live system induces bugs, it can be extremely
difficult to analyze at run-time exactly which differences led to
the incorrect behavior.

In order to help programmers plan for evolution, understand
the impact of specific evolutionary steps, and to diagnose evo-
lution gone wrong, herein we propose combining the benefits
of Aspect-Oriented Programming and reflection with impact
analysis techniques from the OO and software engineering
disciplines.

We contribute a tool that assists with the deployment of new
code to evolving software that gives insight as to precisely the
behavioral changes between the new code and the code it is
replacing within the running system.

This tool is implemented using pure aspect-oriented and
reflection techniques, and we discuss how to combine this tool
with a load-time aspect weaver to allow precise determination
of the cause of bugs introduced in live, evolving systems. We
conclude by considering the challenges of implementing and
deploying such a tool and outline our plans for future research
and evaluation.

I. INTRODUCTION

Evolving software systems are becoming ever more
prevalant and important, especially considering the rise of
highly-available service-oriented architectures. The rate of
change of software systems has been accelerated by deploy-
ment of web-based applications, which are expected to run
without interruption and with full reliability, notwithstanding
their high rate of change and evolution.

The challenges caused by combining high-availability and
rapid evolution in the same system are daunting. Techniques
and tools to mitigate and overcome such challenges is a topic
of intense research.

One such challenge linked to rapidly evolving software is
the problem of determining the impact of specific changes to
source code – how will these changes propagate and influence
the rest of the system? This question is well-known and well-
studied in the literature [1]–[4]. Techniques have emerged for
answering this question with meaningful precision for software
that does not change at runtime.

One such class of techniques is known as dynamic impact
analysis, which strives to improve accuracy over the static
analysis of source code by employing code instrumentation
and post-mortem analysis. Code is instrumented to generate

trace data at runtime, both versions of the program are then
run through one or more test cases, and finally these traces
are compared and analyzed in order to infer the impact of the
changes with as much precision as possible.

However, in their present state these techniques are difficult
to apply to systems that evolve at runtime. While they can
be used to understand how two versions differ across some
common test cases, they cannot currently be used to discover
the influence of new code on the live system where the
new code is influenced by the behavior and state of the
old code. Another challenge added by live evolution is that
there is no beginning or end to the program where traces
are typically endpointed, so it is difficult to define endpoints
without scattering code or tags throughout the target program.

The contributions of this paper are as follows: First, we
present how to combine aspect-oriented programming and re-
flection to transparently instrument programs while providing
flexibility in how this instrumentation is applied and when
it is active. Second, we enhance analysis techniques first
introduced in [5] that allow the programmer to analyze the
traces to achieve precise change analysis. Third, we evaluate
the performance overhead of using our tool in long running
(evolving) systems by measuring the performance impact both
when tracing is and is not active.

II. TECHNIQUE OVERVIEW

The general strategy of our approach is to first use aspects
to instrument programs so that they generate ”interesting”
trace data (using the AspectJ 5 load time weaver), and then
to analyze these traces (collected from multiple versions (or
evolutionary steps) of the program) in order to determine
which changes in the source code were responsible for the
exhibited changes in program behavior.

We build on the insights and techniques of the Sieve [5]
dynamic impact analysis system, but adapt it for object-
oriented programming, change the nature of the trace data,
and add flexibility and power stemming from implementing
the instrumentation via AOP.

A. Trace Generation

The traces generated by the instrumentation approximate
a complete program trace – a complete, sequential log of
every low-level instruction executed (kept on a per thread
basis) – in the same way that static analyses approximate the
run-time behavior of a program. Greater accuracy over static
analysis can be achieved because the traces have access to
actual program state and control flow as the program executes.



However, while capturing a complete program trace would be
feasible (e.g. by modifying the JVM) and would preserve all
information for the analysis, the size of these traces would
quickly become challenging for long-running programs and
would also cause analysis to be inefficient or even intractable.

To approximate a complete program trace, we use the
following strategy: First, the program trace is endpointed so
that only pieces of the execution trace are instrumented and
recorded. For example, it could use the entrance and exit to
a certain high level method as one set of endpoints. Each
segment of the complete program trace captured between
endpoints is called a trace segment.

For each trace segment several individual traces (repre-
senting an approximation of what happened over time) are
generated over the lifetime of the trace segment. One individ-
ual trace, termed a trace point, is captured for each unique
(method, truncated call stack) pair. The same trace point may
be active many times over the course of the trace segment (as
the same method with the same truncated call stack can be
called many times).

As trace events (field accesses and method calls) are cap-
tured by the instrumentation, the code first determines the
current trace point (creating the individual trace for that trace
point if it is the first time entering that trace point) and
then adds to the individual trace in the following way. First,
information about the event is fed into a hashing function,
and this hash value is used as a key into the individual trace
(represented using an ordered hash table). If the individual
trace does not contain the hash key, then the event is appended
to the end of the trace along with a counter initialized to 0. It
also includes relevant information about the event such as the
source code location corresponding to that event. If the trace
already contained the hash key, then the counter associated
with that hash key is incremented.

In this way the trace approximates the sequential execution
of events during all executions occurring in that trace point
during the current trace segment. The use of event hashing and
not storing more than one trace entry per hash allows traces to
remain small, while the counter helps to model which branches
were taken and how many loop iterations were executed.

B. Trace Analysis

The analysis of the trace data builds on the technique
introduced by the Sieve [5] system.

To understand what has changed between different versions
of the (running) program, the following procedure is used:
First, one or more trace segments are captured on both the old
and new versions of the running program. Next, the program
identifies for each individual trace in the new version the
corresponding individual trace in the old program. Currently
the tool uses method name and signature to pair up traces, but
more complex heuristics would be needed if method signatures
or class names change between versions (as might be the case
with an evolving system).

It then computes the minimal differences in execution
between each new and old trace point by computing the

longest common subsequence algorithm. Each individual trace
is represented as a sequence of trace events, so the longest
common subsequence between two traces represents the exe-
cution events that occurred in both versions of the program.
The LCS can then be used to determine the minimal set of
execution events that either did not occur in the new version
or were new to the new version.

The result of the analysis can be used by developers to
understand the precise effects new component versions have
upon program execution. If the input traces were complete
program traces, then the results of the analysis would present
precisely the points in both time and code at which the
behavior of the new version diverged from what the old version
would have done. In the trace approximations described above
all temporal notions of computation are not recorded (aside
from capturing the sequence in which execution events are first
encountered within a given trace point), so the results of the
analysis represent the precise points in the source code where
the execution differed, but do not provide insight into the time
of the divergence or how differences observed in different trace
points can be ordered with respect to each other.

The traces can be enhanced in several ways to increase the
precision of the analysis. First, the definition of a trace point
can be extended from (method, truncated call stack) to include
additional context, such as actual values of parameters or the
number of times the method was called (allowing the capture
of different traces for both the first N and last M executions
for any given (method, truncated call stack)). Due to our use
of aspects and reflection to implement trace generation, all of
the above enhancements could be parameterized and adjusted
at run-time – an important factor for long running, evolving
systems. This parameterization could be used to increase the
accuracy of the generated traces where it is anticipated that
the increased accuracy is needed, while still avoiding full
generation of the complete program trace (unless this is desired
as indicated by the parameters).

C. Example

We present a small example in this section to illustrate
how the tracing process works. Consider the two versions
of some program shown in Figure 1. The only difference
between the two versions is on line 9. For this example
a trace point is identified solely by the method name, a
location solely identified by a line number, the trace event
data includes the values of the parameters, and the hash of a
trace event is the hash of the method name and parameter
values. We define one trace endpoint using the pointcut
execution(void C.m1(..)).

Figure 2 shows the individual traces that would be generated
for the trace segment that became active as part of the C.m1
method execution. Each line in a trace consists of the follow-
ing format: hash.counter: line: event data. This
example exhibits many illustrative points: First, note that the
execution between the two versions would first begin to differ
at line 9 – in version A the call to m3 is made on line 10
and then again on line 12, whereas in version B this call



(Version A) (Version B)
1) class C { 1) class C {
2) void m1(){ 2) void m1(){
3) out.println("p1"); 3) out.println("p1");
4) m2(true); 4) m2(true);
5) out.println("p2"); 5) out.println("p2");
6) } 6) }
7) void m2(boolean b){ 7) void m2(boolean b){
8) out.println("p3"); 8) out.println("p3");
9) if (b) 9) if (!b)

10) m3(); 10) m3();
11) out.println("p4"); 11) out.println("p4");
12) m3(); 12) m3();
13) m4(); 13) m4();
14) } 14) }
15) void m3(){ 15) void m3(){
16) out.println("p5"); 16) out.println("p5");
17) } 17) }
18) void m4(){} 18) void m4(){}
19) } 19) }

Fig. 1. Two versions of a program to be traced

======== C.m1.txt ====== ======== C.m1.txt ======
81a9db.1: 3: println p1 81a9db.1: 3: println p1
fc3511.1: 4: m2 true fc3511.1: 4: m2 true
d8247b.1: 5: println p2 d8247b.1: 5: println p2

======== C.m2.txt ====== ======== C.m2.txt ======
56b1b1.1: 8: println p3 56b1b1.1: 8: println p3
5b0e30.2: 10: m3 7f4bdb.1: 11: println p4
7f4bdb.1: 11: println p4 5b0e30.1: 12: m3
42eea0.1: 13: m4 42eea0.1: 13: m4

======== C.m3.txt ====== ======== C.m3.txt ======
5533c9.2: 16: println p5 5533c9.1: 16: println p5

Fig. 2. Individual traces generated for example program in Figure 1

is only made on line 12. This behavior is exhibited by the
traces. The trace for C.m2 for version A shows m3 was called
before println("p4") and that it was called one more time
sometime after that. The trace for C.m2 for version B shows
m3 was called after println("p4") and that it was not
called again after that. Second, when the LCS is generated
between the two versions it would show that the execution
diverged after line 8 and then converged back at line 13.

Adjusting the definition of trace point identity and the inputs
used in the hash for events, and also allowing timestamps to
be used allows programmers to explore changes with varying
levels of accuracy and efficiency.

III. IMPLEMENTATION

This section describes the role of aspect-oriented program-
ming and reflection in implementing our techniques.

A. Tool Overview

The tool is composed of a collection of instrumentation
aspects that generate trace data and a Java analysis program to
extract meaning from the trace data. To run a program using
the instrumentation framework a script is used in the place
of the java command that invokes the AspectJ 5 load-time
weaver and configures the instrumentation aspects according
to parameters passed on the command line. Parameters can

fine tune exactly which parts of the program are instrumented
and are also used to adjust the accuracy of trace data (allowing
tradeoffs to be made between performance and accuracy).

B. Aspectized Instrumentation

The generation of trace data is composed of four compo-
nents: call stack tracking, trace event tracking, trace genera-
tion, and trace persistence.

For each thread an object representing the current threads
call stack is maintained by an aspect. This aspect intercepts
all method calls within the scope of interest using before and
after advice and adds to or removes from the thread’s call stack
object. Each call stack entry records the information required
to identify the current trace point (method name, signature, and
possibly argument values). An aspect is used instead of a Java
exception object to obtain the current call stack both because
our technique is faster (the call stack is updated only as it is
changed, instead of rebuilding it every time it is needed) and
it allows us to gather more information about the call stack
(such as the values of parameters to methods).

Events that are of interest to the trace (field accesses and
method calls) are modeled by using a pointcut. This pointcut
uses an if primitive pointcut so that it does not match when
there is no active trace segment. A before advice uses the
above pointcut to execute trace generation logic whenever an
event of interest is about to be executed.

The logic to generate the traces works in the following
fashion. When an event of interest is about to execute it
generates the current trace point using the current call stack
for the current thread and the individual trace associated with
that trace point is looked up (or created if it does not exist).
The data for the event is collected through reflection, and then
a portion of this data is put through a hash function to generate
a key. If the key already exists in the hash table that trace entry
is ‘revisited’ to update its counter and timestamps. If the key
does not exist, a new trace entry is added to the hash table (the
hash table also records the order of the insertions to capture
an approximate sequence of execution within the trace point).

When the end of the trace segment is reached the trace
persistence component writes all trace data generated during
the trace segment into a series of files and then deactivates
tracing. One file is generated for each individual trace with
the trace entries written in the order in which they were
inserted into the hash table. Each trace entry written includes
information relevant to the analysis, including the original
source location responsible for that execution event. This
persistence logic can easily be offloaded onto a background
thread so as not to block the progress of the application thread.

C. Use of AspectJ Reflection

Reflection is used in the implementation primarily in two
places. First, the call stack builder uses reflection features of
thisJoinPoint to extract the source location of method
calls. The call stack builder also uses the new reflection
features in AspectJ 5 to determine whether or not the method
is actually part of an aspect, which can be useful in the analysis



stage to analyze the change in how aspects advised the base
code between versions of a program.

Second, reflection is used in the advice that advises trace
events to capture dynamic information about the event (e.g.
values of method parameters) and also for supporting more
complex definitions of trace points.

D. Trace Endpointing

Traditionally, the endpoints of a program trace are defined to
be the start and end of a program. However, this is not useful
for long running, evolving systems, so a means of defining
endpoints with finer granularity is needed. Because aspects
are used to perform the instrumentation, the full power of the
AspectJ quantization model is available to the programmer in
describing where trace segments should begin and end.

When the program is started, abstract pointcuts indicating
the (possible) places where trace segments begin and end can
be instantiated (by using an XML file which is used by the
load-time weaver). The cflow and cflowbelow primitive
pointcuts are then used with the above pointcuts to capture
precisely the places where a trace segment begins and ends.
The programmer can use dynamic primitive pointcuts in the
endpoint pointcuts (e.g. if) so that tracing is only activated
if certain boolean variables are set. More complex activation
logic could be added if required (similar to how logging
frameworks allow classes of log messages to be turned on
or off) at the cost of higher performance overhead.

Using pointcuts to implement endpointing allows for great
flexibility in deciding the scope and precision of tracing
operations. The tool could also be enhanced to allow for more
than one trace segment per thread to be active at one time,
although this would affect performance (whether or not the
impact would be significant is yet to be determined).

E. Analysis of Trace Data

The analysis is implemented as a Java program that accepts
as input the location of two directories, where each directory
contains the results from one trace segment (for one particular
version of the program). The analysis program also accepts
a mapping that tells it how to correlate trace points in one
version with the trace points in the other version (by default,
this mapping is the identity function).

For each trace point it computes the longest common
subsequence of trace events, using the hash value as a sequence
element. The output is similar to the common diff tool in
that it shows which trace events were exhibited in the old
version but not the not version and vice versa. The tool assists
the user by parsing the rest of the trace data associated with
each trace event (source code information) and displays this
decoded information to the user. In this way the user can see
the source locations where the executions differed. If trace
points were defined using a larger context and trace data
contained temporal information, as discussed in section II,
then the resulting output would also give insight into when
the new version first diverged from the old version in addition
to information about where it did so.

IV. DISCUSSION

In this section we discuss how the techniques described in
this paper relate to software evolution and also discuss the
performance impact of using these tools in deployed systems.

A. Benefits for Software Evolution

The techniques presented in this paper are beneficial for
evolving software systems in the following ways:

1) Java software can be transparently instrumented and
the behavioral differences between different versions of
objects (or similar objects) can be precisely observed.

2) The use of pointcuts to describe trace endpoints gives
a great deal of flexibility in dynamically deciding when
and what to trace through the use of dynamic pointcuts,
while still reaping optimizations made by the AspectJ
weaver. For example, before upgrading the evolving
system tracing could be turned on for some built in test
cases, and then afterwards the traces generated using
the new classes could be compared to the old traces to
understand exactly what went wrong (or right).

3) AspectJ pointcuts allow developers to selectively spec-
ify what should be instrumented (improving efficiency)
while still being robust to enhancements and changes to
the type system in the future.

We anticipate collaboration with others in this field to further
learn how these ideas can be applied.

B. Performance Implications

In order for these techinques to be most useful for evolv-
ing software they must be deployed on production systems.
Production systems are much more sensitive to effects on
performance, so it is important to understand the performance
costs associated with the instrumentation and tracing.

Even when the instrumentation and tracing logic is woven
into a program, there are different levels of tracing activity
with different corresponding performance costs. The first level
is where the code has been instrumented, but there is no active
trace segment in any thread. In this level the performance
cost is due to the dynamic if pointcut designator that checks
before every method call the value of a boolean flag (in this
level, the flag is false, and further logic is not executed).
The next level is where there are active trace segments on
other threads, but not in the current thread. In this situation
the global tracing flag is true (meaning tracing is active
somewhere), but the dynamic if pointcut designator has to
also then check a hash table to see whether or not there is an
active trace segment for the current thread (in this case, there
is not). Finally, the highest level is where there is an active
trace segment for the current thread, so trace data is being
generated for every method call (or field access if desired).

We have designed and run two benchmarks to quantitatively
understand the performance costs associated with each level of
activity. The first one is a microbenchmark that is a program
consisting almost exclusively of nested method calls (there are
a few loops and addition operations, but the primary computa-
tion of the program is calling methods). This microbenchmark



Fig. 3. Microbenchmark Results

was designed to exhibit the actual timing overheads associ-
ated with the differing levels of instrumentation. The second
benchmark is the Java Linpack benchmark [6], which heavily
exercises the floating point processor while also involving a
large number of method calls (over 100 million).The goal of
this benchmark is to see how the overall performance of a
computationally intensive program (involving a large number
of method calls) is affected after it has been instrumented.
Both of these benchmarks represent worst-case or near worst
case scenarios for the instrumentation; applications in which
the actual number of method calls is relatively small (e.g.
applications built on middleware) will be affected much less.

All benchmark tests were performed on a machine with a
2.33 Ghz Intel core 2 Duo procesor, 2 GB RAM, running OS
X. The programs were compiled and run using Sun’s Java
1.5.0.07 (Server Hotspot VM) and AspectJ 1.5.3. Before the
tests were run all applications were closed and the system left
until it entered an idle state. All timings computed do not
include the time to load the Java VM or perform weaving. All
numbers presented are averages over three runs.

The results of the method calls microbenchmark are pre-
sented in Figure 3 showing the average method call times. In
this test over seven million method calls were made under each
of the different scenarios and then the average time to execute
a method call was computed by dividing the wall clock time by
the exact number of calls made. (For some of the faster tests
hundreds of millions of method calls were made to ensure
a stable result.) The results for the Lynpack benchmark as
presented in Figure 4 show how much slower instrumented
programs ran compared to the original programs.

Applications in production would be in the call stack only
(not active) level most of the time. At this level the overhead
due to code instrumention is 6.1 nanoseconds per method call.
For almost all applications this overhead should be negligible.
Some computationally intensive programs that make heavy use
of method calls in their innermost loops may experience a

Fig. 4. Lynpack Benchmark Results

slowdown similar to Lynpack (9%).
Given that the duration of trace segments should be rela-

tively small (being inactive most of the time – becoming active
before and after components change), especially compared to
the duration during which there are no active trace segments,
the higher overhead present during tracing should not pose a
significant obstacle to adoption. Additionally, if performance
is an issue, load time parameters can cause the instrumentation
to not be applied to certain sections of code such that there is
no overhead for these regions of code.

V. CONCLUSION

We have presented new techniques for understanding the
changes in behavior of programs as they evolve (while run-
ning) over time. These techniques show promise to assist in
planning, monitoring, and diagnosing evolving systems. There
is certainly more to understand relating to the performance
of the technique and how to improve it, but our results so
far indicate that the overhead is an acceptable burden for
most applications. Future work involves further developing
and refining the methods for evolving software, applying the
technique to one or more case studies, and developing tool and
IDE support for easy integration into the development process.
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